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Abstract

Strong Planning and Forecast Horizons for a Model with
Simultaneous Price and Production Decisions

by
G.L. Thompson, S.P. Sethi, and J.T. Teng

In this paper, ﬁe have solved a general inventory model with
Simultaneous price and -production decisions. Both 1linear and
non-linear (strictly convex) production cost cases are treated.
Upper and lower bounds are imposed on state as well as control
variables. The problem is solved by using the Lagrangian form of
the maximum principle. Strong planning and strong forecast
horizons are obtained. These arise when the state variable
reaches its upper or lower bound. The existence of these horizons
permits the decomposition of the whole problem into a set of
smaller problems, which c¢an be solved separately, and their
solutions put together to form a complete solution to the problem.
Finally, we derive a forward branch and bound algorithm to solve

the problem. the algorithm is illustrated with a simple example.
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1. Introduction

Many methods have been developed to solve the problem of
production scheduling over future periods of time in order to
satisfy the given amounts required of a certain commodity in each
of these periods. Such methods are based on a wide range of
production-inventory models--from elementary deterministic ones to
sophisticated stochastic models with time-varying parameters.
Historically, applications of optimization methods to production
and inventory problems date back at least to the classical EOQ
model and the lot size formula. The EOQ model is essentially a
static model in the sense that it assumes the demand to be
constant and only a stationary solution 1is sought. A dynamic
version of the 1lot size model in which the assumption of a
steady-state demand rate was dropped was analyzed by Wagner and
Whitin [131]. The solution methodology used there was dynamic
programming.

In some dynamic problems it is possible to show that the
optimal decisions made during an initial positive time interval
are either partially or wholly independent of the data from some
future time onwards. In such cases, a forecast of the future data
needs to be made only as far as that time to make optimal
decisions in the initial time interval. The intial time interval

is called the planning horizon and the time up to which data is

required to make the optimal decisions during the planning horizon

is called the forecast horizon. Whenever they exist, these

horizons naturally decompose the problem into a series of smaller

problems.




If the cptimal decisicns during the planning hcrison are
cocmpletely independent cf the data beycnd the fcrecast fcorizen,

then the former is called a strcng planning hcrizcn and the latter

is called a strong fcrecast herizen. If, on the cther hand, scme

mild restricticns cocn the data after the fcrecast hcrizen are

required in crder that to keep the optimal decisicns during the

planning horizon unaffected. then it is called a weak forecast

hcrizcn, and the ccrrespcnding planning heorizon is called week

planning horizon. For example, Modigliani and Hehn [5] shcw that

a planning herizen [O,t*] in their prcducticn planning mcdel, the
cerrespcnding streng forecast herizen is always the cverall
herizen [0,T], but the infcrmaticn required cn [t*,T] is just the
accumulated demand rather than the complete demand schedule for
each instant cf time in that interval. In the case, the weak
planning hcrizen and the weak fcrecast hcrizon are identical. Of
ccurse, a weak planning horizen dces nct reduce the interval cver
which fcrecasts are needed, but reduces the infeormaticnal
requirement within this interval. |

Earlier planning hcrizen results for prcducticn planning,
cbtained by using dynamic programming and variaticnal arguments,
have been given by Kunreuther and Mcrton [2,3], Mcdigliani and
Hchn [5], and Wagner and Whitin [13]. Other horizen results,
derived by using optimal ccntrcl thecry, were given by Kleindcrfer
and Lieber [1], Lieber [4], Mcrten (61, Pekelman [7,8], Teng,
Thempson, and Sethi [10], and Vanthienen [12].

In this paper, the problem of determining simultanecusly the

price and production schedule c¢f a firm cver a finite hcrizon T is
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sclved fcr a given time dependént demand functicn. Bcth linear
and ncn-linear (strictly ccnvex) prcducticn ccst cases are
treated. Upper and lower bcunds are impcsed on state as well as
ccentrol variables. The problem is sclved by using the Lagrangian
form cf the maximum principle. Streng planning and strcng
fcrecast .hcrizons are cbtained. These arise when the state
variable reaches its upper cr lower bcund. The existence cf these
horizons permits the deccmpesiticn cf the whcle problem intc a set
cf smaller prcblems, which can be sclved separately, and their
scluticns put tcgether tc form a ccmplete scluticn tc the prcblem.
Finally, we derive a fcrward branch and bcund algerithm tc sclve
the linear.case. The forward algerithm fer khe ecnvex case is

similar.

2. The Linear Prcducticn Ccst Case

In this secticn, we will find the cptimal price p*(t) and
prcducticn rate u*(t) ef a mcncpclist whe faces a differentiable
demand curve cn the interval [0.T]. Suppcse the demand curve is
D(t) = a(t)-bp(t) and the 1linear prcducticn ccst is cu(t), the
linear inventcry cost is hI(t), the maximum prcducticen rate is u,
and the warehcuse cconstraint is I(t) < W. The resulting prcblem

is that cof maximizing the follcwing expressicn:

J, = 15{p(t)[a(t)=bp(t)1-nI(t)=cu(t)}dt (1

subject tc




[a] i(t)

u(t)-[a(t)-bp(t)], I(0) = I0 < W (2)
Coqd IC) 2 I(t) > 0, [py1T(t) < W, [u lult) >0,

(3)
[u2] u(t) Sl-l, [n1] p(t) > 0, [nZ]P(t) < a(t)/vb,

where h,c,b,u and W are positive ccnstants and e<a(t)/b for all t.
Ncte that a(t)/b represents the maximum price, which is required
tc exceed the prcducticn ccst (ctherwise, nc prcducticn will take
place). The functicn (t) is the adjcint variable cf (2), and
pq(t), 92(t), u1(t), “z(t)’ n1(t) and ng(t) are the Lagrange
variables c¢f the ccrresponding constraints. A dect abecve a
variable denctes the first derivative with respect tc time.

This mcdel is similar tc the mcdel due tc Pekelman (7] except
that the prcducticn c¢cst here is 1linear, and prcducticn and
warehcuse upper bound constraints have been added. 1In Secticn 3
we ccnsider the same mcdel with convex prcducticn cest, which is a

generalizaticn cf Pekelman's.

2.1 The Necessary Ccnditicns fer an Optimal Socluticn

The Hamiltonian functicn of Prcblem (1) is
H=Pa-p2b-hI-cu-*(u-a+bp) 4)
which is 1linear in u and quadratic in p s8¢ that the c¢ptimal

» *
prcduction rate u (t) is bang-bang and the cptimal price p (t) is

a sat functicn. For this prcblem the Lagrangian is




| L=H+D1(u—a+bp)+02(a-bp4u)+u1u+u2(ﬁ-u)+n1p+n2(a/b_p) (5)

The following necessary ccnditicns hcld, see [9], fer an optimal

scluticn

AL A
ay =0=-c+ +P1-°2+“1~"2, cr
0 if x+P1-92<c
»
U =4 undefined if l+91-92=c (6)
a if X+o1-02>c;
3L =0=za-2bp+ (2,40 -0 _)b+n.-n
3p TUTETERRERT#O =R )ben my, or
0 if X400, -0_<-asb
1 2=
*
P = (a/b+*+°1-°2)/2 if -a/b<’~+°1-°2<a/b (7
a/b if a/b5X+o1-92;
the adjcint equaticn satisfies

>e

==-3L/93I =h (8)

and the transversality ccnditicns are

T T T U T el

2(T)>0 and A (T)I(T)=0; (9)

» the complementarity and ncnnegativity conditions are




(10)
and 01,92';11 y 1,203

a2

the variable I(t) is ccntinucus, * is ccntinucus except

pcssibly at an entry time or an exit time tc the bcundary
ccnditicns I(t)=0 or I(t)=W, A+D1-92 is centinucus everywhere,

and mcrecver 3150 and 3250. (11)

Ncte that tiw is an initial cr entry time tc I(t) = W if I(tiw) <

W, and I(tiw)=1(ti;)=w; te, 15 a final or exit time to I(t)=W if

I(te)=I(ty,)=W and I(t,7)<W. The definitiocn of t;q and tg, are

similar and are cbtained by changing W tc O.

2.2 0Optimal Pclicies fcr Three Pcssible Cases

There are cnly three different pcssible cases fer the values
cf I(t). We shall discuss the cptimal poclicies in cases 1,2,and 3

belcw.

Case 1 0<I(t)<W

This implies °1=92=0. We have twc different regimes 1A and
1B in this case.

Regime 14 X(t)<e. Frem (6) and (7) we have the fcllcwing
cptimal policies;

2 *
u =0, p =max'0;(a/bs*)s2}, 1¢0 (12)

pieilitnaih
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Regime 1B A(t)>c.
. _ *
u =3 and p =min {a/b; (a/b + *)/2} (13)

Case 2 I(t)=0 and I(t)=O0.

. » *
This implies P_=0, u =a-bp , and (a/b+c)/2<{p*<a/b. We alsc

2
have regimes 2A and 2B in this case.

Regime 2A U>(a-be)/2. An applicaticn c¢f the maximum

principle gives the fcllowing cptimal pclicies;

* *
u =(a-be)/2, p =(a/b+c)/2, >‘+p1=c and
(1)

Regime 2B U<(a-bc)/2 and égbh. The maximum principle give

the fcllcwing cptimal pclicies;

» _ * - -
u =zu, p =(a-u)/b, x+"1=(a-2u)/b,

(15)

'.':n:‘ u: ---
L "1 5 0, and > (a-2u-bec)/b>0

Ncte that if beth u<(a-bc)/2 and a>bh hcld then 51=é/b-h>0, which

leads tc a contradicticn to (11).

Case 3 I(t)=W and I(t)=0.




* * *
These ccnditions imply P,=0, u =a-bp , and (a/b+c)/2<{p <a/b.

1
We have cnly cne regime 3A in this case.

Regime 3A u<(a-be)/2 and ézbh. The maximum principle yields;
* _ * - -
u =u, p =(a-u)/b, x-°2=(a-2u)/b, CPELPEL
(15)
and H2=(a-26-bc)/b>0

Ncte that if ud>(a-be)/2 then u*=(a-bc)/2, p*z(a/b+c)/2, and
A-0,zc. This implies 32,20 and contradicts the fact that Ao65m,
Similarly, if G<(a-bc)/2 and a<bh then *-p,=(a-20)/b, A-b,=a/b>h
and this again leads t¢ a c¢ccntradicticn. Therefcre Regime 3A is

the cnly case tc be ccnsidered here.

A simple eccnocmic interpretation cf Cases 2 and 3 is as

fclleows. It is easy tc prcve (preccf omitted) that 1=0 implies

|
|

that (a-bc)/2 is the best prcducticn rate withcut ccnsidering the

perfect prcducticn rate. In Regime 2A, U>(a-bc)/2 means that we

can set the prcducticn rate tc be the ideal perfect prcducticn

rate without viclating the prcduction capacity. Thus, we den't
need tc¢ build up inventcry for the future, i.e., Keeping the
warehcuse empty is cur optimal strategy. In Regime 2B, 0<(a-be)/2
implies that ¢the prcducticn rate cculdn't reach tc the ideal

perfect prcducticn rate because cf a lower prcduction capicity.

However, 5§bh hints that the rate c¢f price increase, a’/b, is nct

prcducticn capacity. Therefcre, we can call (a-be)/2 an ideal
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greater than the marginal inventcry ccst, h. Therefcre, it dces
nct pay t¢ build up inventery. Similarly, in Regime 3A the
prcducticn capacity is less than the ideal perfect prcducticn rate
and the rate cf price increase is greater than c¢r equal tc the

marginal inventcry ccst. Thus, it pays tc build up inventcry.

2.3 Thecretical Results

Let us investigate the behavicr of I(t). First, we shall
establish a sufficiently large initial inventory I0 such that

- *
IOZIO implies u =0 for all t. Frcm Regime 1A, and Equaticn (9) we

kncw

Io=fg[a-bmaxf0; [a/b+h(t=-T)1/2}1d¢t (7

The inventcry fo is just sufficient tc meet demand when price is

determined by either cf the first twc rules in (7).

Thecrem 1 I4>Ty<=>I(T)=I,-I,20, and A(T)=0

*
<=>u =0 for all t, and p,(T)=a/(2b).

)
Prcef. We prcve the seccnd implicaticn conly. Assume u =0
»

and p (T)=za/(2b). This can ceccur only in Regime 1A. Thus,

OKI(t)<W, M(t)=h(t-T) for all t, and I(T)=I -I,>0. The

0

verificaticn ¢f the ccnverse is trivial.

Ccrcllary 1 IO<_I'O<=>I(T)=0 and A(T)>0
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Thecrem 2 We can ccnclude that iSO under each c¢f the fcllcwing

cases:

(1) IOZIo
(ii) IO<IO and u>(a-be)/2 for all t

(iii) Ioffo; whenever U<(a-bc)/2 we have égbh. ]

Prccef. Case (i) fcllcws frcm Thecrem 1. We ncw prcve cases
(ii) and (iii). Suppcse nct, i.e., 1(t)>0 in (t,t+€); see Figure
1. This can happen cnly in Regime 1B. Thus, fcr all te(t+e/2,
t+€) We have Adc, u’:ﬁ and p‘:min[a/b; (a/b+12)/2]. Hence
- R *
. . * a if 2»>a/b (p =a/b)
I=zu-{a-bp ) ={

- *
u-(a-bi)/2 if A<a/b (p =(a/b+r)/2) J

In Case (ii), the conditicns, u>(a-be)/2 with A(t+e)>c, imply

-(a-bA)/2>T-(a-be)/230 on (t+e/2, t+e).  Thus I(t+e)>0. By
repeating this argument fcr the intervale (t+e, 1t+42¢), (1+2¢,
t+3¢), ...., we see that I(T)>0. This ccntradities Ccrcllary 1

which says I(t)=z0 in Case (ii).

In Case (1i1), I=0 or (bh-3)/2>0.  Thus, I(t+€)>0, which, as

abcve, ccntradict I(T)=0 fer Case (iii).
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Figure 1

Cercllary 2 Under the cases specified in Thecrem 2, the cptimal

path for I(t) is in cne cf the follewing three cases:

(a) TI(t)>0 fer all t (This case can happen if and only if I

O>I0)
i (b) I(t)=0 fcr all t (This case can happen if and only if I,=0)
(c) I(t)>0 ¢n [0,t1] and I(t)=0 cn [t1,T] (This case can cccur if

and cnly if °<IOSIO)
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We ncw discuss how t1 in Corcllary 2(c) is determined. Fer

ccnvenience, let us define the functicn ¥(t)=(A+p -92)(t) which is

1
similar tc the ¥ functicn in Pekelman [7]. In Regimes 2A and 2B,

we have

e if u>(a-be)/2
VI o= (18)
(a-20) /b if G<(a-bc)/2 and a<bh

cr Vvy=maxic; (a=20)/b}l. Intervals such that u>(a-be)/2 cr

[U<(a=bec)/2 and égbh] are defined tc be empty warehcuse transitive

intervals c¢n which the bcundary ccnditiocn I(t)=z0 hclds.

Similarly, by using the results in (16) fcr Regime 3A we have

Wiww:(a-Zﬁ)/b (19)

Intervals such that u<(a-be)/2 and Eth are defined tc be full

ﬁ{ warehcuse trasitive intervals cn which the bcudnary ccnditicn

1 I(t)=W hclds.
After defining the functicn wo, we can use a binary search
prcgram te¢ find the values ¢f A(0) and t1 in Cercllary 2(e¢). By

Corcllary 1 we have XOEX(O)>-hTE£ If ccenditicon (ii) of Thecrem

0"
2 cccurs then wva(t,)=c sc that Ag<e. If conditicen (iii) cf

| Thecrem 2 happens the k0<a(0)/b; otherwise A(t)>a(t)/b (because
B Azh>a/b), p(t)=a(t)/b for all t so that I(T)>I, and leads to a
( centradicticn. Thus, x0<a(Q)/b530 hclds in any of the three

ccnditicns c¢f Thecrem 2. Tc find the value of t1, we can first
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(n
0

(1)
0

3 equaticns cr nct.

guess A\ =(X0+X0)/2. Check Whether 1 satisfies the fcllcwing

l(t1)=ko+ht1=00(t1) (20)
x(tc)=*0+htc=o 21
| te - 81,
? IO =f0 {a-bmax[O;(X0+ht+a/b)/2]}dt-ft {u-[a-b(lo+ht)]/2}dt (22)
c

If yes, then we are dcne. If the right-hand side cf (22) is
larger than”I0 then 1let the new guessing value cf XO is
x62)=(lé1)+50)/2 because i is an increasing functicn with respect
te \ge Otherwise, let X62)=(Aé1)+30). Repeating this binary

search prccedure we can get the values cf t1 and XO' Next, we

shall explcre the case in which ad>bh, i.e., the case in which it

pays tc stcre inventcery.

Lemma 1. If a is centinucus and ncn-decreasing, then the cptimal
value ¢f ¥ is alsc cocntinucus and ncn-decreasing.

Prccf. In Regimes 1A and 1B, ¥=) is an increasing continucus
functicn. In Regimes 2A and 2B, w=#0=max{c;(a-26)/b} is a
ncn-decreasing c¢ontinucus functien. Similarly, in Regime 3A

0=vw=(a-25)/b has the same prcperties.

Ccrcllary 3. If a is ccntinuous and ncn-decreasing then the

) L
cptimal ccntrcls u and p are beth non-decreasing.

i v At mat e e L

o -
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Precf. It immediately follocws from Lemma 1 and (6), and (7).

) -
Corcllary 4. If a is ccntinuocous and ncen-decreasing then u (to)zu

#* -
implies u (t)=u for all £>t°.

Prccf. Fcllcws immediately frcm Ccrcllary 3 and the
constraint u<u.
Lemma 2. If 3>bh then I(t)=0 on any interval (t°,t') will imply
':(a-bc)/Z(G cn (to,t1).

Prcef. I(t)=0 o¢n (to,t1) implies this case can happen cnly
in Regime 2A. Thus, @»(a-bc)/2 and u'=(a-be)/2<d on (£0,th).

Frem Corcllary 4 and Lemma 2, we can easily get the fcllcwing

result.

* -
Cercllary 5. If a>bh and u (t0)=u then I(t)>0 almcst everywhere
-cn [to,T]-

Thecrem 3. If a>bh then there exists an cptimal scluticn such
that I(t)>0 almcst everywhere cn [0,T].

Prccf. Tc prcve this thecrem, we change (6) sc that u' =3
when x+o1-p22c, which ccmes by putting together the last twec parts
cf (6). 1If u*(t)=0 for all t then we are in Regime 1A sc¢ that
I(t)>0 almcst everywhere cn (0,T]. Otherwise, there exists

» -
u (to)=u for scme toefo,T]. Let us define

t0=1nf{t:u’(t)=a}.




If t0=0 then the thecrem is true by Corcllary 5. If to#O and

there exists an cpen interval, say (t2,t3) with t35to, such that
* -

I(t)=0 on (ty,t3); then 00(2320 and u (t)=zu on (t2,t3). This

ccntradicts the fact that u (t)=0 on (t2, t3). Thus, I(t)>0

almcst everywhere cn [O,tol. By Corcllary 5, we alsc have I(t)>0

almcst everywhere on [to,T]. This completes the prccf.

Thecrem 4. If I(t)>0 almost everywhere cn [0,T], then the optimal

#*
centrcl path for u (t) satisfies cne c¢f the fclleowing three cases:

*
(I) u =0 fer all t

(II) u =u fer all t

*
(II1) wu

0 for t<t, and u'=d for t>tg

Prcef. If I(t)>0 almest everywhere on [0,T] then case 2
cannct cccur sc that there are nc jumps in A(t), except in Regime
3A. Regime 3A can cccur cnly fellcwing Regime 1B; alsc 1A cannct
fcllow Regime 1B. Therefcre, we have the fcllcwing three possiple
cptimal pclicies:

(1) Regime 1A, fc. all t. (This implies (I));

(2) Regime 1B at first, then Regime 3A and 1B maybe
alternating several times, at time T the case shculd be Regime 1B.
(This implies (II));

(3) Regime 1A at first, then Regime 1B, after this Regime 3A
and 1B maybe alternating several times, at time T the case shculd
be Regime 1B. (This implies (III)).

This completes the prccf of Theorem U.
Here, we shall alsoc discuss the situaticn in which the

excgencus variable a(t) can first go up and then down cr first
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down then wup. In fact, using the abcve results we can easily

cbtain the feollewing thecrems.

Thecrem 5. Assume T is chosen sc that adbh for t<t and égbh for
tzi; i.e., it pays to store precducticn before but nct after t.
Alsc assume neither ccnditicn (i) nor ccnditicn (ii) cf Thecrem 2
heolds. Then there exists an cptimal scluticn such that I(t)
: satisfies cne cf the fcllcwing twc cases:
(i) I(t)>0 fer all te[0,T)
(ii) there exists t, >t such that I(t)>0 cn (0,t,) and I(t)=0

2
cn [t,,T].

Thecrem 6. Assume t is chcsen sc that égbh fer téz and a>bh fer

t>t. Alsc assume neither conditicn (i) ner ccnditien (ii) of
Thecrem 2 hclds. Then there exists an cptimal scluticn such that
I(t) satisfies cne ¢f the fecllewing three cases:
(1) I(t)>0 fer all telO0,T)
(2) there exists ti<t such taht I(t)=0 [0,t3] and I(t)>0 on
(t3,T).

e

(3) there exists t,<ts<t such that I(t)>0 on [0,t,), I(t)=0

cn [tu,tsl, and I(t)>0 ¢n (ts,T).

In general, the interval [0,T] will ccntain many subintervals
which EZ(a-bc)/Z cr égbh cr adbh. By repeatedly applying the
results cf Corocllary 2 and Theorems 3, 5, and 6 we can ccnstruct
the sclutiocn by plecing tcegether different scluticns cbtained from

applicaticn c¢f these thecrems.

it A

ot e m——— i S N
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2.4 Planning Hoerizcn Thecrem

The cptimal decisicns (price and prcducticn rate) during the
planning pericd [O,t‘] can be completely independent cf the data
beyond the forecast hcrizen [O,t**] with t*gt**. That is, nc
infcrmaticn after t" is required fqr making cptimal decisions c¢n
[O,t']. We therefcre call t* tc be a streng planning herizen and

Y
t tc be a streng fcrecast horizen.

In this secticn, we will explcre the strecng planning and

fcrecast hcerizens fer the prcblem.

Lemma 3 Assume we have the cptimal trajectcry such that t* and
t** are the twc ccnsecutive entry times at which inventcry hits
the bcundary ccntraint. Furthermcre, let I(t'):o and I(t**)=w, cr
I(t*):w and I(t**)=0. Suppcse that t*<t**. Then t* is a strcng
herizen, and t*f is a strcng fcrecast hcrizen.

Prcef. We may assume, withcut lcss cf generality, that t* is
the first time tc enter the bcundary ccnditicn I(t)=0 cr W. Let
the cptimal value cf 2(0) be X, tc the criginal prcblem. Then the
values cf t* and AO are decided by the demand in [O,t*], the

prcducticn capacity, and the initial inventcry as fcllows.
* . 3 -
Ag+ht =A(t T)=v(t ")zmax{c;(a-20)/b},

L
O(or W)-Io-fo Idt.
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’ »
If we can prcve that X(t)=X0+ht en (0,t ) is still cur cptimal

scluticn tc any problem having the same infcrmaticn as the

E X ) % %
criginal problem ¢n [0,t ] and regardless cf its value after t ,
#*
then we are dcne. Here, we will prove the case in which I(t )=W
and I(t*')=0, see Figu.e 2. 1In féct, using an analcgous argument

we can prcve the cther case in which I(t'):o and I(t'*)zw.

V3

Figure 2

If the new cptimal value c¢f A(0) were’ro with 70>AO, then the new

#
inventcry 'f shculd be greater than the criginal I ¢n [0,t ]
because the higher value cf ¥ implies the higher value c¢f I by

using (2), (6), and (7). Thus, there exists a te(O,t') such that

0 be the earliest time such that ?(t):w. Then we

have T(t)>0 for all te(t%,t"). Otherwise, let t' be the first

o\
I(t)=W. Let t

("8 #*
time such that I(t1)=0 and t1t(t0,t ), see Figure 3 fecr

illustration. This implies o<f5w and WZh:W because Regimes 2A and
0

Cad

2B cannct cccur cn (t ,t1) fer I.
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1
o
<1
']
\\KI

oed

r’“ﬁ
cr
~

time

LAY

A . -
>X0+ht0=v(to), ¥>h=¥ on [to,t1] we have I>I c¢n

Since ?(t°)=?0+ht°

[to,t1] and

1

. 1.
I(t1)—I(t0)=ft0Idt<f
t

2 &~ 1 ~ 0
b TaesTe ) Tee)=mw,
t
1 0 . . . 4
cr I(t )=I(t )-W<O0, which leads tc a ccntradicticn. Thus, I(t)>0
» ~ ) ~ [ ~
fer all te(to,t Y. Again, 0<I$W on (to,t ) implies WZh:W and I>I
»
cn (to,t ). Then we have
~ % ~ *.
T(t )-w:rtoIdt>ftoIdt=w-I(t0)>0,
t Tt ~
which again leads tc a contradicticn tc the fact that I(t)<W for

all t. Therefcre, we have shcwn that 7b>lo cannct be an cptimal .

scluticn te¢ the new prcblem. Next, if the new cptimal value cf

*
A(0) were Ao with 34<ry, then the new inventory IKI on {o,t 1 sc
» »
that I(t )<W, see Figure 4, Since ¥=¥w cn (t ,tf) where tf is the
final cr exit time of I(t)=W we know adbh, i5h<5, AL i(i, and

] e o
I<I en (¢ ,tf). Similarly, we can get ¥<¥, IKI, and I<W on

[tf,t..]. This implies
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1t =D ac™ rcel)=-w,

e
oY L(t )<0 and leads toc a ccntradicticn again.

|
|
|
! |
4 ! < %
! % | |~ ’bou'nd fotv
| =T yeeef |
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!
i | !
|
q L] i
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Figure 4
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Thecrem 7. (Strcng Planning Hcrizen Thecrem)

*
Let ¢t and tf be the entry and exit times tc I(t)=W

rea, .

. 0 f .. f+
respectively, i.e., I(t)=W foer te(t ,t" ], and I(t ) and I(t" ")<W.
e
Suppose t is the next entry time to I(t)=z0. Then all t befcre

* #*
tf are strong planning hcrizens and all t after t are strcng

f

forecast herizens, i.e. t° is a maximal strcng planning horizon

#
and t. is a mimimal strcng forecast herizen. The thecrem alsc

hclds when 0 and W are interchanged.

Prccf. If tf is not a strong planning herizcn then there

*
exists a new c¢ptimal scluticn such that toe(t ,tf) is the new exit

0

*
frem I(t)=W bcundary. The reascns are as fcllcws. If t <t then

*
it ccntradicts tc Lemma 3 that ¢t 1is a strcng planning hcorizon.

On the other hand, if to»tf

then tf is a strcng planning hcrizen.
Using the same arguments as in Lemma 3 we can prcve that the new

exit time to will lead tc a ccntradicticn.

2.5 A Fcrward Branch and Bcund Algeorithm

it The scluticn te (1) is cbvious if IOZTO' Therefcre, we may
assume, withcut lcss cf generality, that IO<TO. In crder tc find

an upper bcund tc the optimal cbjective value cf (1) we sclve the

follcewing prcblem:
max J,=/T(p(t)[a(t)-bp(t)I-cu(t)}dt, (23)

. subject to ¢

I(t)=u(t)-(alt)-bp(t)], I(t)=I, (24)
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It is easy tc shcw that the optimal scluticns are given by:

P (t)=(asbc)/(2b), D" (t)=(a-bc)/2

and

J,=r1(a2-b%c?)/(Up)dt-cl /] (a=be)/2dt-1,] (25)
Fcr convenience, we let
J[“,3]=maxi2[p(a-bp)-h1-cu]dt, subject tc censtraints (2) and (3).

It is clear that jt in (25) is an upper bocund cf J[t,T] because we
dc nct have inventcry ccst and prcducticn capacity ccnstraint in
prcblem (23). Next, we shall say that the vertex Vj is fathcmed if
and cnly if nc¢ further explcraticn frem this vertex can be
prcfitable. Otherwise, we shall say that v. is unfathcmed cr

J
alive. We are ncw in a pecsiticn te present the algcrithm.

Fcrward Branch and Bcund Algerithm

Step 0 (Initalizaticn) Begin at the live vertex v where J=0. Gec

0’
tc Step 1.

Step 1 (Branching) Assume that t, is the first entry time tc the

i
ccnstraint I(t)zW cr I(t)=0. Sclve the fcllcwing twc cases.

Case 1.1 Suppcse that ti is the entry time cf I=W. Then ti
shculd satisfy the follcwing constraints:

A(t)=la(t ))=-2u]/b if U<(a-bc)/2 and adbh at t=t, (26)

i




X(t):k(t;)+h(t-ti) for all t<t (27)

§

w-Io>f8[u-(a-bp)]dt>-Io for all t<t, (28)
ty

W-Io=f0 fu-(a-bp) 1dt (29)

If there exists cne c¢r mcre scluticns, then we keep each such
scluticn as successcr vertices cf Vo and gc¢ tc Case 1.2.
Otherwise, there are nc scluticns feor this branch, terminate this

branch and gc tc Case 1.2.

Case 1.2 Suppcse that ti is the entry c¢f 1=0. The ti
satisifies the same ccntraints as in Case 1.1, except that (26)

and (29) must be replaced by (30) and (31), respectively.

e if U2(a-bc)/2 at t=ty
Me]) = (30)

[a(t,)-20)/b if G<(a-bc)/2 and agbh at t=t;

1= * lu-(a-bp) 1at (31)
Again, we keep all sclutions as successcr vertices cf Vgo if any,

and ge tc Step 2.

Step 2 (Update Bcund) Check each new live vertex Vj' If t(J)=T

and 383¢y, wnere 19 is the last time of v, at which I reaches

tc Wer 0, and J(J) is the cbjective value cf vj, then the vertex
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v; is fathomed. If £ and 399757, then tet J=0'9. G te

Step 3.

Step 3 (Fathoming by Bcund) Check each new live vertex Vj' If

J[O.t(j)]+3t(J)SJ, then the vertex v is fathcmed. Gec tc Step 4.

Step 4 (Branching) If nc live vertices exist, gc tc Step 7;
ctherwise, select a live vertex vj. If I(t(j))zw, then gc tc Step

5; otherwise, g¢ tc Step 6.

Step 5 Assume that tfw is the exit time frcm I(t)=W and ti is the

next entry time of I=0 c¢r I=W. As in Step 1, we have twc cases.

Case 5.1 Suppcse ¢, is the entry time tc I1=0 and t <ti.

i fw

Sclving the fcllcwing ccntraints, we can find the values cf tew

and ti.

Mt #)=lalt, )-201/b if G<(a-be)/2 and aybh at t=t  (32)

c if @>(a-be)/2 at t=t,
M) = (33)
[a(t,)-201/b if U<(a-be/2 and agbh at t=t,
A(t)=X(fw*)+h(t-tfw) for all te(t. ,t,) (34)

u<(a=-be)/2 and adbh fer all te(t(J),tfw) (35)
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-wert -(a-
W< tfw[u (a=-bp) ldt<O fer all tt(tfw,ti) (36)
ty
W=/ [{u-(a-bp) Jdt (37N
fw

If all abcve ccnstraints have one cor mcre scluticns, then we save
them as successcr vertices cf vj and gc tc Case 5.2. Otherwise,

terminate this branch and gc to Case 5.2.

Case 5.2 Let t; be the entry time tc I(t)z=W. This case is
similar tc Case 5.1, except that (33) and (37) are replaced by

(38) and (39), respectively.

MeD)=lalt,)-20/b if G<(a-bc)/2 and aydbh at t=t, (38)
t i ’

0=/," [u-(a-bp)dt (39)
fw

If there exists scme scluticns tc (tfw,ti) in Case 5.1 ¢r Case
5.2, then we keep them as successcr vertices of Vi and gc tc Step

2. Otherwise, v, is fathcmed and tc tc Step 4.

J

Step 6 Assume that t., is the exit time from I(t)=0, and t, is

the next entry time tc I=0 cr I=W, with tf0<ti.

Case 6.1 Suppcse that ti is the entry time tc I=0. Solving

the fcllcwing ccnstraints, we may get the values cf tfo and ti.
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e if uz(a-bc)/z at t:tro
A +y
- - *
[a(tfo)-Zu]/b if u<(a-bc)/2 and a<bh at t:tfo
e if U>(a-be)/2 at t=ty
X(ti ) = (41)
[a(t;)-241/b  if G(a-be)/2 and agbh at t=ty
- + +
AE)=A (tegT)+h(t-t 7Y for all te(tog,t;) (42)
0<s81  [u-(a-bp)ldt<Ww  for all te(tog,t;) (43)
t f£0
Yy
0=/ [u-(a-bp)ldt (4y)
Leo

@>(a-be)/2 or [G<(a-be)/2 and a<bh] fer all te(t(j),tfo) (45)

We keep all scluticns as successcrs cf Vj’ if any, and gc tc Case

6.2.

Case 6.2 Suppose that ti is the entry time tc I=W. Again,

this case is similar tc Case 6.1, except that we replace (41) and

(44) by (46) and (47), respectively.
] A(t, )=lalt,)-201/b if G<(a-bc)/2 and adbh at t=t; (46)

t
W=/ i {u-(a=bp) ]dt %))
fo




=27~

' If there exist any socluticns to (tfo,ti) in Case 6.1 cr Case 6.2
then save them and go tc Step 3. Otherwise, check whether (45) is
satisfied by setting tf0=T. If yes, let I(t)=0 cn [t(J),T] be a

feasible scluticn and gc te Step 2. If nct, v, is fathcmed and gc

J
to Step 4.

: Step 7 (Terminaticn) J is cptimal.
Te illustrate this algocrithm, we will sclve a simple

numerical example.

An Example

Suppcse that T=10, a(t)=30+10t-t2, b=1, h=1, e¢=10, u=10,
W=125/12 and Io=102/12. We then have that u0<(a-bc)/2 fer
£e(0,10, a>bh for t<h.5 and acbh for t>4.5.

Step O J=0

Step 1 Sclving Case 1.1, we have
ACE,")=10+10t <2, t <8
i ’" itrir ti-

A(h)=10+9ti+t-t§, for all t<t,

- t
] H-Io=u=f01[u-(a-bp)]dt
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which gives a solution ti=1, a(£)=18+t for t<1. Let the vertex
corresponding this case is Vy. Next, we find that there are no

feasible solutions to Case 1.2, and go to Step 2.
step 2 t{'’21410 and go to Step 3.
Step 3 J[0,1]+J1>0 so that v, is alive. Go to Step 4.

Step 4 There is a unique live vertex vq with I(1)=W. Go to Step
5.

Step 5 Solving (32)-(37) simultaneously, we obtain t. =2 and
ti=7. Let Vs be the vertex corresponding to this case. Again, we
find that there are no feasible solutions to Case 5.2. Go to Step

2.
Step 2 t§2)=7¢1o and go to Step 3.

Step 3 J[o,7]+37>o so that v, is still alive. Go to Step 4.
Step 4 There exists only one live vertex Vo and I(t?):O. Go to
Step 6.

Step 6 There are no feasible solutions to both Case 6.1 and 6.2
since u<(a-be)/2 and éSbh for all t27. We know that I(t)=0 on

[7,10] is a feasible solution, let V3 be the corresponding vertex

to this, and go to Step 2.
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et

Step 2 t§3)=1o.

J[0:10]=I(1)0[p(a-bp)-hI-—cu]dt:,

where
18+¢ if 0<t<
10+10t-t2 1f 1¢6<2
A2 PYW If 2¢t<7
. 10+10t-t2 if 7¢t<10
u(t)=10 for all 0<t<10
24+5.5¢-0.5t2 if 0<t<1
20+10t-t% if 1442
P(t) =157,5.5¢-0.5¢° if 2<t<7
20+10t-t° if 7¢£<10
and
102/12+4t-9t2/4+t3/6  1f 0<t<1
! 125/12 1f 1<t¢2
I(t) =

49/12+7¢-9t2/4483/6 1 2¢t<T
0 if 7<t<10

Go to Step 3.
Step 3 J=J[0,10] so that V3 is fathomed. Go to Step 4.

H Step 4 There are no live vertices. Go to Step 7.

e W S -

ETY L
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Step 7 J=J[0,10] is the optimal solution. This shows that t=2 is
a maximal strong planning horizon and t=7 is a minimal strong

forecast horizon, see Figure 5.
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Figure 5. Trajectory for Example.

3. Strictly Convex Non-negative Production Cost Case

In this section, we extend Pekelman's model [7] by
considering the production and warehouse capacities. We will see
that the optimal inventory trajectories and the strong planning
and strong forecast horizons for the linear production cost and
strictly convex production cost cases are quite similar,

Suppose that monopolist faces a strictly convex non-negative
production cost f(u) instead of a linear production cost cu. Then
the monopolist will attempt to maximize the mathematical

expression

Jp2 15 tp(a-bp) -hI-£(u) }dt (48)




subject to (2) and (3). Here, we assume that f(u) is twice

differentiable, and f'(0)<a/b for all t.

The necessary conditions for an optimal solution to (48) are
similar to those of (1) except that Equation (6) is replaced by
the following equation

0 if x+p1-ngf'(0)
| u* =1 8(a+pq=0p5) if f'(0)<;+p1-92<f'(ﬁ) (49)
a if f'(G)§x+p1-p2
where
g=(£1)"1, (50)

3.1 Optimal Policies

Again, there are only three different possible cases for the
values of I(t) _in this problem but the 'situation of optimal

policies is slightly different to the linear production case.

Case 1 OKI(t)<W. This implies pq=p,=0. We have three

regimes 1a, 1b, and 1¢ in this case.
Regime 1a. a(t)<f'(0). We yield
! * # .
] =0, p =max{0;(a/b+1r)/2}, IK0 (51)

Regime 1b. f£'(0)<a(t)<g'(u). We obtain
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u*=g(1)<0, p¥*=min(a/b; (a/b+r)/2} (52)
Regime 1c. f'(u)<a(t). We get
- *
u*=u, p =min(a/b; (a/b+:r)/2) (53)
. L #*
Case 2 I(t)=z0 and I(t)=0. This implies 0,20, u =a-bp , and
g(x+p1)-[a-b(x+p1)]/2 if x+p1§min(f'(ﬁ); a/b}
t = G-[a-b(x+p1)]/2 if f'(a)<x+p1<a/b (54)
g(x+p4)>0 : if a/blasp <1 (0).
Thus, we have two regimes 2a and 2b in this case.
Regime 2a. ygza+pq-p,<min{f'(U); a/b}. We have
* *
u =g(vy) and p =(a/b+yy)/2 (55)
and Y satisfies the following equation (56) and constraint (57):
8(vy)-a/2+byy/2=0 (56)
and *0=x+915h, or
0°=a/[b+23'(00)]5h (57)

Regime 2b. v03+o1-p2=(a-25)/b>f'(ﬁ) and égbh.
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* _ * -
We get u =u, p = (a-u)/b, u1=n1=n2=0, and
uz:(a-ZG-bc)/b)O (58)

. #
Case 3 I(t)=W and I(t)=0. This implies 0420, u*za-bp . We

also have two regimes 3a and 3b in tihs case.
Regime 3a. ww=x+p1-925min{f'(ﬁ); a/b} and 52bh.
. * %
We obtain u =g(y ), p = (a/b+¢w)/2, (59)
and ww satisfies the following constraints:

g(xpw)-a/2+bq;w/2=0 (60)

and

vw=a/[b+2g'(ww)]2h (61)

- - [ ]
Regime 3b. ¢w=x+p1-92=(a-ZU)/b>f'(u) and a>bh.

S -
We yield u =u, p =(a-u)/b, W12nq=n,=0, and

(62)
u,=(a-2U-be)/b>0

Note that Case 3 can occur only if a>bh. That is, full
warehouse can happen only if the rate of price increase is not

less than the inventory cost.
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3.2 Theoretical Results and Planning Horizon Theorem

Using argument similar to that in Section 2 it is clear that
Theorem 1 is still the in the strictly convex production cost case
but Theorem U4 is not correct in that case. We also need a slight
modification of the arguments to get results similar to those in

Theorem2 2 and 3.
Theorem 8. If I>T, or a/b¢h, then IO for all t.

Proof. If Iosz then the proof is trivial. Suppose that
I0<f0 and there exists an open interval (t, t+¢) such that i(t)>0'
on (t, 1+¢). Then this can occur only in Regimes .1b and 1c.

Therefore, we have

g(a)=-(a=bx)/2 if £'(0)<a<minga/b; £'(0)}
g(1)>0 if a/b<akfr(u_
I- G-(a-bar)/2 if f£'(U)<a<a’b
w0 if a>max{a/b; f£'(u)}
and
(bh=-a)/2+g'(2)h if £'(0)<almin{a/b; £'(0)}
T =
(bh-a)/2 if f£'(4)<a<a/b

Since f(u) 1is strictly convex and non-negative, we know f' and
8-(1")"1 are increasing. Hence, g' must be positive. So,
I(t+e)>0 which also implies I(T)>0. This contradicts that fact
tht IO<IO.




=-35-

Theorem 9. If a/[b+2g']1>h for all t, then I(t)>0 almost

everywhere on [0,T].

Proof. If not, I(t)=0 on some open interval (t, t+¢). Since

g' is positive, we have a/b>a/[b+2g'l>h and Regimes 2a and 2b

therefore cannot happen. This leads to a contradiction.

By using a proof essentially identical to that of Theorem 7,
we can show that the same Planning Horizon Theorem which holds for
the linear cost case (Theorem 7) also holds for the convex cost

case. We restate the theorem for completeness.

Theorem 10. (Strong Planning Horizon Theorem)

* %
Let tf be the exit time from I(t)=W and t be the next entry
time to I(t)=0. Then tf is a maximal strong planning horizon and
* %
t is a minimal strong forecast horizon. The theorem also holds

when 0 and W are interchanged.

4., Conclusion

In this paper we have studied a general
price-production-inventory model with linear and nonlinear
production costs. We characterized the optimal trajectories and
showed that there could be strong planning and forecast horizons.
We presented a forward branch and bound algorithm which identifies
strong planning and forecast horizons, and uses them to decompose
the problem into a set of smaller problems, The algorithm is

{llustrated by means of a simple example.
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It would be possible to extend the results of this paper 1in
several different ways. For instance, more general demand
functions could be considered. In a subsequent paper we intend to
study the model when backlogging is permitted. Also, if we change
the linear inventory cost into a strictly increasing non-negative
inventory holding cost, then our strong planning horizon theorem
is still true. The other theorems in this paper, with suitable

modifications, would also be true.
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20. ASSTRACT (Conttnue on reverss elde If neevessry and identily ay biock maneer) ¢
In this paper, we have solved a general inventory model with simultaneous i

!
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price and production decisions. Both limear-and non-linear (strictly con-
vex) production ccst cases are treated. Upper and lower bounds are imposed
on state as well as control variables. The problem is solved by using the
Lagrangian form of the maximum principle. Strong planning and strong fore-j
case horizons are obtzined. These arise when the state variable reaches it
! upper or lower bound. The existence of these horizons permits the decomposi
L tion of the whole problem into a set—of-smaller-problems,aihich can be
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’ separately, and their solutions put together to form a complete solution of the-
problem. Finally, we derive a forward branch and bound algorithm to solve the
problem. The algorithm is illustrated with a simple example.
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